Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.
Answer:
330 m/s
Explanation:
The sound wave has to travel TO the cliff AND back = 2 * 49.5 = 99 m
magnitude of velocity = distance / time = 99m / .3 s = 330 m/s
Answer:
D) Since the stars would move from East to West just as the Sun and Moon do.
Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m
Answer:
d = 90 ft
Explanation:
Here in each swing the distance sweeps by the swing is half of the initial distance that it will move
So here we can say that total distance in whole motion is given as

since it is half of the distance that it will move in each swing so it would be a geometric progression with common ratio of 1/2
so sum of such GP is given by the formula


