The four classes of polymers are:
1. Nucleic acids. Examples are DNA and RNA
2. Protein. Examples are enzymes and hemoglobin
3. Carbohydrates. Examples as starch and glycogen
4. Lipids. Examples are triglycerides and phospholipids
The building blocks of nucleic acids are called bases and there are four types known as Guanine, Adenine, Thymine and Cytosine.
The building blocks of carbohydrates are glucose molecules.
The building blocks of protein are amino acids.
The building blocks of lipids are a combination of fatty acids and glycerol.
Kinetic energy, KE, is modeled by the formula

, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.
The work that is required to increase the speed to 16 knots is 14,176.47 Joules
If a catamaran with a mass of 5.44×10^3 kg is moving at 12 knots, hence;
5.44×10^3 kg = 12 knots
For an increased speed to 16knots, we will have:
x = 16knots
Divide both expressions

To get the required work done, we will divide the mass by the speed of one knot to have:

Hence the work that is required to increase the speed to 16 knots is 14,176.47 Joules
Learn more here: brainly.com/question/25573786
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s