This can be, for example, halogensubstituted hydrocarbons.
CCl₄, C₂F₆.
Or halides halocarboxylic acids, and other compounds.
O
II
Cl₃C-Cl
The conversion of volume to moles at STP is 1 mole.
The ideal gas equation is given as :
P V = n R T
where,
P = pressure of the gas
V = volume of the gas
n = ?
R = constant = 0.823 atm L / mol K
T = temperature
At STP , the pressure is 1 atm and the temperature is 273.15 K, the volume At STP is 22.4 L.
moles , n = P V / R T
n = ( 1 × 22.4 ) / (0.0823 × 273.15)
n = 1 mole
Thus, at STP , the number of moles is 1 mol.
To learn more about moles here
brainly.com/question/8429153
#SPJ4
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C
Answer:
The value of the equilibrium constant = 5.213
Explanation:
Here
(equilibrium constant) is referred to as the partial pressure of product divided by the partial pressure of reactant with each pressure term raised to power that is equal to its stoichiometric coefficient in balanced equation
.
As such only gas appear in
expression as solids takes a value of 1;
SO ; in the given equation from the question:
2 A (g) + B (s) ----> 2 C(s) + D (g)
![K_p = \dfrac{[D]}{[A]^2}](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cdfrac%7B%5BD%5D%7D%7B%5BA%5D%5E2%7D)


The value of the equilibrium constant = 5.213