Explanation:
The dimensions of a standard backpack is 30cm x 30cm x 40cm
The mass of an average student is 70 kg
We know that, the density of gold is 19.3 g/cm³.
Let m be the mass of the backpack. So,

An average student has a mass of 70 kg. If we compare the mass of student and mass of backpack, we find that the backpack is 10 times of the mass of the student.
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
mass of chlorine = 35.5 grams
Therefore,
molar mass of CH2Cl2 = 12 + 2(1) + 2(35.5) = 85 grams
number of moles = mass / molar mass
number of moles of CH2Cl2 = 66.05 / 85 = 0.777 moles
One mole of CH2Cl2 contains two moles of Cl and each chlorine mole has Avogadro's number of atoms in it.
Therefore,
number of chlorine atoms in 0.777 moles of CH2Cl2 can be calculated as follows:
number of atoms = 0.777 * 2 * 6.022 * 10^23 = 9.358 * 10^23 atoms
Now, we will take log base 10 for this number:
log (9.358 * 10^23) = 23.97119
Answer:
An Arrhenius base is a substance that dissociates in water to form hydroxide (OH–) ions. In other words, a base increases the concentration of OH– ions in an aqueous solution.
Answer:
Cathode: Ag
Anode: Br₂
Explanation:
In the cathode must occur a reduction, so it's more likely to a metal atom be in the cathode. For the metals given the reduction reactions and the potential of reduction are:
Ag⁺ + e⁻ ⇒ Ag⁰ E° = + 0.80 V
Fe⁺² + 2e⁻ ⇒ Fe⁰ E° = - 0.44 V
Al⁺³ + 3e⁻ ⇒ Al⁰ E° = -1.66 V
As the potential for Ag is the higher, the reduction will occur for it first, so in the cathode will produce Ag.
For the anode an oxidation must occurs, so the reactions for the nonmetals are:
F₂ + 2e⁻ ⇒ 2F⁻ E° = +2.87 V
Cl₂ + 2e⁻ ⇒ 2Cl⁻ E° = +1.36 V
Br₂ + 2e⁻ ⇒ 2Br⁻ E° = +1.07 V
For oxidation, the less the E°, the faster the reaction will occur, so Br₂ will be formed in the anode.