A Bronsted-Lowry acid is a chemical species that donates one or more hydrogen ions in a reaction. In contrast, a Bronsted-Lowry base accepts hydrogen ions. When it donates its proton, the acid becomes its conjugate base. A more general look at the theory is as an acid as a proton donor and a base as a proton acceptor. :)
Answer: 0.0250
Explanation: 10 X 0.0750 = .75
.75 / 30 = 0.0250 M
I believe the answer would be true
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
A phospholipid has a charged head and an uncharged tail.