Answer:The standard reduction potential, Eo , for Pb2+(aq) is greater than that for Mg2+(aq).
Explanation:
Metals are usually arranged in an order of reactivity called activity series. Metals that are high up in the series are good reducing agents with very low (very negative) reduction potentials. Metals with greater (less negative) reduction potentials are found lower in the series. In the image attached, elements were arranged according to their reducing ability. Magnesium is very electro positive hence it is a better reducing agent with a lesser standard reduction potential than lead(refer to the image for numerical values of standard reduction potentials). Hence it displaces lead from solution and the elemental lead deposits on the wire.
Answer:6.94
Explanation:
Molar mass of CaCO3=40+12+16×3
=40+12+48=100g/mol
Moles=mass of substance/molar mass
=97mg/100g=0.097/100=0.00097moles/L.
PH=-log[CaCo3]=-log(0.00097)=6.94
P.s it's log to base e
Answer:
has 4 electrons in its valence shell.
Explanation:
Silicon has 14 protons, so its neutral atom has also 14 electrons, thus, the electron distribution following the Linus Pauling's diagram is:
1s² 2s²2p⁶ 3s²3p²
Thus, it has 4 electrons in its valence shell (3), likely carbon. So, silicon would have some of the properties of carbon, such as form 4 bonds, and the structure would be similar.
There’s lots of measurements. (m, kg, s, mol, cm, in, mm) etc