Neutrons are required for the stability of nuclei, with the exception of the single-proton hydrogen nucleus. Neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes.
Hope it helps!
Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
Answer:
K = 1800 kJ
Explanation:
Given that,
The speed of the object, v = 30 m/s
Mass of the object, m = 4000 kg
We need to find the kinetic energy of the object. The formula for the kinetic energy is given by :

So, the required kinetic energy is equal to 1800 kJ.
-
Eddy Current Testing
Introduction
Basic Principles
History of ET
Present State of ET
The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag
Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter
Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching
Procedures Issues
Reference Standards
Signal Filtering
Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection
Conductivity
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings
Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.
Quizzes
Formulae& Tables
EC Standards & Methods
EC Material Properties
-
Current Flow and Ohm's Law
Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.
I = V / R 
Where:
I =
Electrical Current (Amperes)
V =
Voltage (Voltage)
R =
Resistance (Ohms)
Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.
The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.
Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.
See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?
Answer:
The correct answer is A The distance is greater in the first hour because her speed is faster.
Explanation:
During the first hour, Anna is driving at a speed of 50 km/h. During the second hour, she is only driving at a speed of 30 km/h. The faster she goes, the farther she will go.
Hope this helps,
♥<em>A.W.E.</em><u><em>S.W.A.N.</em></u>♥