<u>Given:</u>
Initial concentration of potassium iodate (KIO3) M1 = 0.31 M
Initial volume of KIO3 (stock solution) V1 = 10 ml
Final volume of KIO3 V2 = 100 ml
<u>To determine:</u>
The final concentration of KIO3 i.e. M2
<u>Explanation:</u>
Use the relation-
M1V1 = M2V2
M2 = M1V1/V2 = 0.31 M * 10 ml/100 ml = 0.031 M
Ans: The concentration of KIO3 after dilution is 0.031 M
 
        
             
        
        
        
Answer:
Isobutyl formate (2-methylpropyl methanoate) is an organic ester with the chemical formula C5H10O2. Used for flavor and fragrance because of its odor.
Explanation:
 
        
             
        
        
        
Answer:
B) 0.32 %
Explanation:
Given that:

Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-

The expression for dissociation constant of acid is:
![K_{a}=\frac {\left [ H^{+} \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20H%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BCH_3COO%7D%5E-%20%5Cright%20%5D%7D%7B%5BCH_3COOH%5D%7D)


Solving for x, we get:
<u>x = 0.00568  M</u>
Percentage ionization = 
<u>Option B is correct.</u>
 
        
             
        
        
        
There is 213 units i believe hope so
        
             
        
        
        
One of the two products of this reaction is carbonic acid (H2CO3), which immediately forms water and the gas you identified after exposure to the flaming and glowing splints. Write a balanced equation showing the decomposition of carbonic acid.