The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
Due to lava which heats water where water vapour is comes
Answer:
5.50 moles of magnesium oxide is 221.6742 grams
Explanation:
to do this you multiply the number of moles by the molar mass
What's the problem ? Hardness is not the definition of a metal.
You need to expand your thinking. EVERY element is solid, liquid, and gas, over different ranges of temperature ... including all of the metals. There are only TWO elements that are liquid AT ROOM TEMPERATURE, and mercury is one of them. But on a mild day at the south pole, mercury is solid too.