Answer:

Step-by-step explanation:
the third option
Step-by-step explanation:
1 fourth of dr difference between 2 thirds and 1 half
we know that
the volume of a solid oblique pyramid is equal to

where
B is the area of the base
h is the height of the pyramid
in this problem we have that
B is a square

where
<u>
</u>
so


substitute in the formula of volume
![V=\frac{1}{3}*x^{2}*(x+2)\\ \\V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%2Ax%5E%7B2%7D%2A%28x%2B2%29%5C%5C%20%5C%5CV%3D%5Cfrac%7B1%7D%7B3%7D%2A%5Bx%5E%7B3%7D%20%2B2x%5E%7B2%7D%5D%5C%20cm%5E%7B3%7D)
therefore
<u>the answer is</u>
![V=\frac{1}{3}*[x^{3} +2x^{2}]\ cm^{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%2A%5Bx%5E%7B3%7D%20%2B2x%5E%7B2%7D%5D%5C%20cm%5E%7B3%7D)
Answer:

Step-by-step explanation:
The question to be solved is the following :
Suppose that a and b are any n-vectors. Show that we can always find a scalar γ so that (a − γb) ⊥ b, and that γ is unique if
. Recall that given two vectors a,b a⊥ b if and only if
where
is the dot product defined in
. Suposse that
. We want to find γ such that
. Given that the dot product can be distributed and that it is linear, the following equation is obtained

Recall that
are both real numbers, so by solving the value of γ, we get that

By construction, this γ is unique if
, since if there was a
such that
, then
