Approximately of steam at (assuming that the boiling point of water in this experiment is .)
Explanation:
Latent heat of condensation/evaporation of water: .
Both mass values in this question are given in grams. Hence, convert the specific heat values from this question to .
Specific heat of water: .
Specific heat of copper: .
The temperature of this calorimeter and the of water that it initially contains increased from to . Calculate the amount of energy that would be absorbed:
.
.
Hence, it would take an extra of energy to increase the temperature of the calorimeter and the of water that it initially contains from to .
Assume that it would take grams of steam at ensure that the equilibrium temperature of the system is .
In other words, of steam at would need to release as it condenses (releases latent heat) and cools down to .
Latent heat of condensation from of steam: .
Energy released when that of water from the steam cools down from to :
.
These two parts of energy should add up to . That would be exactly what it would take to raise the temperature of the calorimeter and the water that it initially contains from to .
.
Solve for :
.
Hence, it would take approximately of steam at for the equilibrium temperature of the system to be .
A star that always remains above your horizon and appears to rotate around the celestial pole.
Explanation:
A) a star that is close to the north celestial pole: a circumpolar star could be close to the north celestial pole, but this answer is omitting the south celestial pole.
B) a star that is close to the south celestial pole: a circumpolar star could be close to the south celestial pole, but this answer is omitting the north celestial pole.
C) a star that always remains above your horizon and appears to rotate around the celestial pole: this is the definition of a circumpolar star.
D) a star that makes a daily circle around the celestial sphere: every star does this.
E) a star that is visible from the Arctic or Antarctic circles
: there are many starts visible from there that are not circumpolar.
The statement being made is completely true. This layer of rock is called a Sedimentary Rock level and is slowly formed over millions of years with minerals and organic remains from the bottom of the Oceans that may no longer be covered in water anymore. Since it is made up of all these minerals and remains, it is studied widely by Geologists and Archeologists to better understand the Earth's past.