1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
2 years ago
5

The difference between a Scalar quantity and a Vector quantity?

Physics
1 answer:
andrew-mc [135]2 years ago
3 0

Answer:

A quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.

You might be interested in
Calculate the temperature of the air mass when it has risen to a level at which atmospheric pressure is only 8.00×104 Pa . Assum
cestrela7 [59]

Answer:

T_{2}=278.80 K

Explanation:

Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.

(\frac{V_{1}}{V_{2}})^{\gamma -1} = \frac{T_{2}}{T_{1}}.

Now, let's use the ideal gas equation to the initial and the final state:

\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}}

Let's recall that the term nR is a constant. That is why we can match these equations.  

We can find a relation between the volumes of the initial and the final state.

\frac{V_{1}}{V_{2}}=\frac{T_{1}p_{2}}{T_{2}p_{1}}

Combining this equation with the first equation we have:

(\frac{T_{1}p_{2}}{T_{2}p_{1}})^{\gamma -1} = \frac{T_{2}}{T_{1}}

(\frac{p_{2}}{p_{1}})^{\gamma -1} = \frac{T_{2}^{\gamma}}{T_{1}^{\gamma}}

Now, we just need to solve this equation for T₂.

T_{1}\cdot (\frac{p_{2}}{p_{1}})^{\frac{\gamma - 1}{\gamma}} = T_{2}

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.

Here,

p_{2}=8.00\cdot 10^{4} Pa \\p_{1}=1.01\cdot 10^{5} Pa\\ T_{1}=298 K\\ \gamma=1.40

Finally, T2 will be:

T_{2}=278.80 K

6 0
3 years ago
Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
maksim [4K]

Answer:

0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz

Explanation:

The fundamental frequency of a standing wave on a string is given by

f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}

where

L is the length of the string

T is the tension in the string

\mu is the mass per unit length

For the string in the problem,

L = 30.0 m

\mu=9.00\cdot 10^{-3} kg/m

T = 20.0 N

Substituting into the equation, we find the fundamental frequency:

f=\frac{1}{2(30.0)}\sqrt{\frac{20.0}{(9.00\cdot 10^{-3}}}=0.786 Hz

The next frequencies (harmonics) are given by

f_n = nf

with n being an integer number and f being the fundamental frequency.

So we get:

f_2 = 2 (0.786 Hz)=1.572 Hz

f_3 = 3 (0.786 Hz)=2.358 Hz

f_4 = 4 (0.786 Hz)=3.144 Hz

6 0
3 years ago
Hey guys, I need help on number 7. Don’t know which one. <br> Which rock will weather faster? Why?
PSYCHO15rus [73]
You can even see dust flying off of B it’s B
3 0
3 years ago
Read 2 more answers
Convert 2 kg to cg give you answer in SI
BARSIC [14]

1 kg=100000 cg

2 kg=200000 cq

If mass is the quantity then kg is the S.I

2 kg=2kg

6 0
3 years ago
Three point charges are arranged on a line. Charge q3 = 5 nC and is at the origin. Charge q2 = - 3 nC and is at x = 4 cm. Charge
Taya2010 [7]

Answer:

q₁ = + 1.25 nC

Explanation:

Theory of electrical forces

Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.

Known data

q₃=5 nC

q₂=- 3 nC

d₁₃=  2 cm

d₂₃ = 4 cm

Graphic attached

The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.

For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So,  the charge q₁ must be positive(q₁+).

The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).

The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs.  F₂₃ is directed to the right (+x)

Calculation of q1

F₁₃ = F₂₃

\frac{k*q_{1}*q_3 }{(d_{13})^{2}  } = \frac{k*q_{2}*q_3 }{(d_{23})^{2}  }

We divide by (k * q3) on both sides of the equation

\frac{q_{1} }{(d_{13})^{2} } = \frac{q_{2} }{(d_{23})^{2} }

q_{1} = \frac{q_{2}*(d_{13})^{2}   }{(d_{23} )^{2}  }

q_{1} = \frac{5*(2)^{2} }{(4 )^{2}  }

q₁ = + 1.25 nC

3 0
3 years ago
Other questions:
  • Why does increasing the number trials increase confidence in the results of the experiment?
    9·2 answers
  • A toaster oven draws 300.0 watts of power. If it is plugged into an outlet with a voltage of 115 volts, what current is in the t
    14·1 answer
  • What do the group numbers mean on the periodic table?
    15·1 answer
  • Think of ways you control temperature to influence chemical changes during a typical day. (Hint: cooking, art class)
    12·1 answer
  • PLEASE HELP I WILL GOVE BRAINLIEST TO FIRST CORRECT ANSWER!!!!!
    14·1 answer
  • The speed of sound through oxygen at 0°C is 316 meters per second. The speed of sound through solid copper is 5,010 meters per s
    6·2 answers
  • Which of these is an appropriate treatment for a deep, bleeding wound?
    8·2 answers
  • Which situation would create a field like the one shown here?
    8·1 answer
  • Which of the following is NOT a type of scientist?
    8·2 answers
  • A 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s 2. W
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!