Answer:
I₁ = 1.6 A (through 7 Ohm Resistor)
I₂ = 1.3 A (through 8 Ohm Resistor)
I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)
Explanation:
Here we consider two loops doe applying Kirchhoff's Voltage Law (KVL). The 1st loop is the left side one with a voltage source of 12 V and the 2nd Loop is the right side one with a voltage source of 9 V. We name the sources and resistor's as follows:
R₁ = 7 Ω
R₂ = 4 Ω
R₃ = 8 Ω
V₁ = 12 V
V₂ = 9 V
Now, we apply KVL to 1st Loop:
V₁ = I₁R₁ + (I₁ - I₂)R₂
12 = 7I₁ + (I₁ - I₂)(4)
12 = 7I₁ + 4I₁ - 4I₂
I₁ = (12 + 4 I₂)/11 ------------ equation (1)
Now, we apply KVL to 2nd Loop:
V₂ = (I₂ - I₁)R₂ + I₂R₃
9 = (I₂ - I₁)(4) + 8I₂
9 = 4I₂ - 4I₁ + 8I₂
9 = 12I₂ - 4I₁ -------------- equation (2)
using equation (1)
9 = 12I₂ - 4[(12 + 4 I₂)/11]
99 = 132 I₂ - 48 - 16 I₂
147 = 116 I₂
I₂ = 147/116
I₂ = 1.3 A
use this value in equation 2:
9 = 12(1.3 A) - 4I₁
4I₁ = 15.6 - 9
I₁ = 6.6 A/4
I₁ = 1.6 A
Hence, the currents through all resistors are:
<u>I₁ = 1.6 A (through 7 Ohm Resistor)</u>
<u>I₂ = 1.3 A (through 8 Ohm Resistor)</u>
<u>I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)</u>
An air mass is a large pocket of air with a uniform temperature and humidity
Answer:
T = 19.75 N
Explanation:
given,
mass of ball = 0.25 Kg
radius = 0.5 m
frequency = 2 s⁻¹
tension in the string = ?
angular velocity
ω = 2 π f
ω = 2 π x 2
ω = 12.57 rad/s
tension on the string is equal to the centripetal force
T = m ω² r
T = 0.25 x 12.57² x 0.5
T = 19.75 N
Tension in the string is equal to T = 19.75 N
Answer:
उव्ग्वुव ह्व्झ एउएइहे एइएइएइएएइ सिसुब्स्सी बीस सिस इस्ब एइब
Explanation:
?उग्व्ब्वु विब्सिए इसिग्व विद्बिअब्द सिह्व्व इस्ब्व दिव्ब्स विह्द ऐद्जिइ सुउगव्दी सिइगैगे क्ज्गैइव अजिव्व्ज्व्स कैह्द अजि ह्ज्फ्ज इअह इकुगै ईग इअबे अजिव्ब जैइअब इऐहे ऐइहे ऐइग्गे अत्व्ब ओप्झब रोज दिधिए ऊइफ्ब इसुहद ईउहे सिउउअ दिइब्द स्सिउए ऐइहे सिएय्व एउविये एइव्वे
I think it might be a or d i hope i have helped :)