Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Search it up next time♀️
A physical property is what a substance is like; it's directly observable. On the other hand, a chemical property is how a substance behaves; its reactivity.
Examples of a physical property are: color, texture, boiling point, freezing point, and melting point.
Examples of a chemical property are: flammability, combustion, and formation of a precipitate.
Answer:
14 mol O₂
Explanation:
The reaction between CO and O₂ is the following:
CO + O₂ → CO₂
We balance the equation with a coefficient 2 in CO and CO₂ to obtain the same number of O atoms:
2CO + O₂ → 2CO₂
As we can see from the balanced equation, 1 mol of O₂ is required to react with 2 moles of CO. Thus, the conversion factor is 1 mol of O₂/2 mol CO. We multiply the moles of CO by the conversion factor to calculate the moles of O₂ that are required:
28 mol CO x 1 mol of O₂/2 mol CO = 14 mol O₂