Answer:
Mass of object (m) = 5.102 kg
Explanation:
Given:
Horizontal Force (F) = 50 N
Find:
Mass of object (m) = ?
Computation:
We know that, acceleration due to gravity (g) = 9.8 m/s²
⇒ Horizontal Force (F) = mg
⇒ 50 N = m (9.8 m/s²)
⇒ Mass of object (m) =  50 / 9.8 
⇒ Mass of object (m) = 5.102 kg
Mass of object (m) is 5.1 kg (Approx)
 
        
             
        
        
        
The variable that changes is the period of the motion.
<h3>What is simple harmonic motion?</h3>
The term simple harmonic motion refers to a regular repeating motion. The acceleration of the SHM is always directed towards the center. The spring is an example of a system undergoing simple harmonic motion.
From the description in the question, the variable that changes is the period of the motion.
Learn more about simple harmonic motion: brainly.com/question/17315536
 
        
             
        
        
        
Basing on the information given, we can calculate the new weight of the object by the following given:current weight = 20 Ng = 10m/s2
20N/4 = 5N
Thank you for your question. Please don't hesitate to ask in Brainly your queries. 
        
             
        
        
        
Answer:
The heavier piece acquired 2800 J  kinetic energy
Explanation:
From the principle of conservation of linear momentum:
0 = M₁v₁ - M₂v₂
M₁v₁ = M₂v₂ 
let the second piece be the heavier mass, then
M₁v₁ = (2M₁)v₂
v₁  = 2v₂ and v₂ = ¹/₂ v₁
From the principle of conservation of kinetic energy:
¹/₂ K.E₁ + ¹/₂ K.E₂ = 8400 J
¹/₂ M₁(v₁)² + ¹/₂ (2M₁)(¹/₂v₁)² = 8400
¹/₂ M₁(v₁)² + ¹/₄M₁(v₁)² = 8400
 K.E₁ + ¹/₂K.E₁ = 8400
Now, we determine K.E₁ and note that K.E₂ = ¹/₂K.E₁ 
1.5 K.E₁ = 8400
K.E₁ = 8400/1.5
K.E₁ = 5600 J
K.E₂ = ¹/₂K.E₁ = 0.5*5600 J = 2800 J
Therefore, the heavier piece acquired 2800 J  kinetic energy
 
        
                    
             
        
        
        
Answer:
wrong statement :  Momentum is not conserved for a system of objects in a head-on collision.
Explanation:
 In a head on collision of two objects , two equal and opposite forces are created at the point of collision . These two forces create two impulses in opposite direction which results in equal and opposite changes in momentum in each of them . Hence net change in momentum is zero. In this way momentum is conserved in head on collision of two objects.