To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as
Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,
From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy is smaller than
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N
Heptane is always composed of 84.0% carbon and 16.0% hydrogen. This illustrates the "law of definite proportions".
Answer: Option C
<u>Explanation:</u>
Proust's law states that every chemical compound used to made up of element constituents with constant proportions in terms of its mass and also independent from its sources and synthesis method. In 1779, Joseph Proust gave other names to the Proust's law as, the law of composition or definite proportions or constant compositions.
This can understood from given example like: Oxygen is composed of 8/9 of the mass of any sample of pure water while the hydrogen fills up the remaining 1/9 of the mass. The basis of stoichiometry is structured with the law of multiple proportions along the law of definite proportions.