<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
To calculate the amount of heat absorbed or released, we use the following equation:
.....(1)
where, q = amount of heat absorbed or released.
m = mass of the substance
c = heat capacity of water = 4.186 J/g ° C
= Change in temperature
We are given:
![m=30g\\\Delta T=[40-0]^oC=40^oC\\q=?J](https://tex.z-dn.net/?f=m%3D30g%5C%5C%5CDelta%20T%3D%5B40-0%5D%5EoC%3D40%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 5023.2 J
We are given:
![m=40g\\\Delta T=[40-30]^oC=10^oC\\q=?J](https://tex.z-dn.net/?f=m%3D40g%5C%5C%5CDelta%20T%3D%5B40-30%5D%5EoC%3D10%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 1674.4 J
Heat gained by Trial 1 than trial 2 = 
Hence, the amount of heat gained in Trial 1 about 3347 J more than the heat released in Trial 2.
Thus, the correct answer is Option b.
Answer:
D
Explanation:
To answer this question, we will need to write the dissociation equation of aluminum trichloride.
AlCl3 ——-> Al3+ + 3Cl-
It can be seen that when aluminum chloride dissociates, it gives one mole of aluminum ion and three moles of the chloride ion.
From here we can see that the concentration of the aluminum chloride equals that of the aluminum ion while that of the chloride ion is thrice that of the aluminum chloride. This means we simply multiply 0.12M by 3 to get the molarity of the chloride ion while that of the aluminum ion remains the same
Answer:
The Electron Configuration for Sulfur(S)= 1s^2 2s^2 2p^6 3s^2 3p^4
Explanation:
Use the sheet attached to help with a future question. (Hint: Follow the red lines). The atomic number will be equal to the number of powers raised.
Answer:
A
Explanation:
The dissolving process depends on the interaction between solute and solvent (solvation) and the breaking up of the intermolecular bond between solutes. The former is exothermic in nature, while the later is endothermic. Energy is released when solute-solvent particles interact. When this energy exceeds the energy required to break intermolecular bonds between the solute particles, dissolution is exothermic.