Answer:
The answer to your question is 75%
Explanation:
Data
Theoretical production = 4 moles
Experimental production = 3 moles
Percent yield = ?
Formula

Substitution

Result
Percent yield = 75 %
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
I will use [pV/T] in the state 1 = [pV/T] in the state 2.
State 1:
p = 1.0 atm
V = 25 liter
T = 100 + 273.15 = 373.15 K
State 2:
p = 19.71 mmHg * 1.atm / 760 mmHg = 0.0259atm
V= ?
T = 25 + 273.15 = 298.15 K
Application of the formula
1.0 atm * 25 liter / 373.15 k = 0.0259 atm * V / 298.15 K =>
V = [1.0atm * 25 liter / 373.15 K]*298.15K/0.0259atm = 771 liter