A. Condensation
Hope this helps!!!
Answer:
FALSE!!!
Explanation:
Business letters are formal and normally given to someone of higher importance.
Answer:
11:1
Explanation:
At constant acceleration, an object's position is:
y = y₀ + v₀ t + ½ at²
Given y₀ = 0, v₀ = u, and a = -g:
y = u t − ½g t²
After 6 seconds, the ball reaches the maximum height (v = 0).
v = at + v₀
0 = (-g)(6) + u
u = 6g
Substituting:
y = 6g t − ½g t²
The displacement between t=0 and t=1 is:
Δy = [ 6g (1) − ½g (1)² ] − [ 6g (0) − ½g (0)² ]
Δy = 6g − ½g
Δy = 5½g
The displacement between t=6 and t=7 is:
Δy = [ 6g (7) − ½g (7)² ] − [ 6g (6) − ½g (6)² ]
Δy = (42g − 24½g) − (36g − 18g)
Δy = 17½g − 18g
Δy = -½g
So the ratio of the distances traveled is:
(5½g) / (½g)
11 / 1
The ratio is 11:1.
Answer:
72.22 N
Explanation:
F = weight
m = mass of body
M = mass of earth
R = radius of earth
G = universal constant of gravitation
F_1= 650 N
F_1 = GMm/R^2
two earth radius above the surface of the earth:
F_2= GMm/(3R)^2= GMm/9R^2= F_1/9= 650/9
=72.22 N
Answer:
v = 2.82 m/s
Explanation:
For this exercise we can use the conservation of energy relations.
We place our reference system at the point where block 1 of m₁ = 4 kg
starting point. With the spring compressed
Em₀ = K_e + U₂ = ½ k x² + m₂ g y₂
final point. When block 1 has descended y = - 0.400 m
Em_f = K₂ + U₂ + U₁ = ½ m₂ v² + m₂ g y₂ + m₁ g y
as there is no friction, the energy is conserved
Em₀ = Em_f
½ k x² + m₂ g y₂ = ½ m₂ v² + m₂ g y₂ + m₁ g y
½ k x² - m₁ g y = ½ m₂ v²
v² =
let's calculate
v² =
v² = 2.7 + 5.23
v = √7.927
v = 2,815 m / s
using of significant figures
v = 2.82 m/s