The Answer for this question is Meter
The noble gas notation of an element includes a noble gas as a condensed way to describe the electronic configuration of an element. IN this case, the nearest noble gas is xenon with an atomic number of 54. Hg's atomic number is 80 so we need 26 more. In this case, after [Xe], the configuration starts with 6s². Hence to complete the configuration the answer is [Xe] 6s2 4f14 5d10
Answer:
The energy released is 13.53j
Explanation:
Q = Mc∆temp.
Q = energy
M = mass
c = specific heat capacity
∆temp. = change in temperature
Q = 1 x 0.902 x (35 - 20)
Q = 0.902 x 15 = 13.53j
Answer:
552 g of LiNO₃
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 2 L
Molarity of LiNO₃ = 4 M
Mass of LiNO₃ =?
Next, we shall determine the number of mole of LiNO₃ in the solution. This can be obtained as follow:
Volume of solution = 2 L
Molarity of LiNO₃ = 4 M
Mole of LiNO₃ =?
Molarity = mole /Volume
4 = mole of LiNO₃ / 2
Cross multiply
Mole of LiNO₃ = 4 × 2
Mole of LiNO₃ = 8 moles
Finally, we shall determine the mass of of LiNO₃ needed to prepare the solution. This is can be obtained as follow:
Mole of LiNO₃ = 8 moles
Molar mass of LiNO₃ = 7 + 14 + (16×3)
= 7 + 14 + 48
= 69 g/mol
Mass of LiNO₃ =?
Mole = mass /Molar mass
8 = Molar mass of LiNO₃ /69
Cross multiply
Molar mass of LiNO₃ = 8 × 69
Molar mass of LiNO₃ = 552 g
Thus, 552 g of LiNO₃ is needed to prepare the solution.