Where’s the question page at??
The larger mass object would have more kinetic energy. 1) its heavier 2) it covers a larger area 3) the more mass an object has, the larger the kinetic energy because of its weight.
Answer:
the time taken t is 9.25 minutes
Explanation:
Given the data in the question;
The initial charge on the supercapacitor = 2.1 × 10³ mV = 2.1 V
now, every minute, the charge lost is 9.9 %
so we need to find the time for which the charge drops below 800 mV or 0.8 V
to get the time, we can use the formula for compound interest in basic mathematics;
A = P × ( (1 - r/100 )ⁿ
where A IS 0.8, P is 2.1, r is 9.9
so we substitute
0.8 = 2.1 × ( 1 - 0.099 )ⁿ
0.8/2.1 = 0.901ⁿ
0.901ⁿ = 0.381
n = 9.25 minutes
Therefore, the time taken t is 9.25 minutes
Answer:
Magnitude of angular acceleration = -3.95 rad/s²
Explanation:
Angular acceleration is the ratio of linear acceleration and radius.
That is

Radius = 72 cm = 0.72 m
Linear acceleration is rate of change of velocity.

Angular acceleration

Angular acceleration = -3.95 rad/s²
Magnitude = 3.95 rad/s²
Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s