Answer:
Circled in Red...plus the scales, of course.
Explanation:
Answer:
its B
Explanation:
It's B & A at the same time because A. a roller coaster uses brakes to slow down and stop. B is the most reasonable answer. Because all roller coasters go up and over a second time over the hill, but they also slow down. But go with B.
TELL ME IF I´M RITE
idksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu j
Answer:
9. The force is a force of attraction and it is 2.95N
10. The magnitude of acceleration 35.12m/s^2 and the direction of this acceleration is away from the other balloon.
Explanation:
Parameters given:
Q1 = 3.4 * 10^-6C
Q2 = - 5.1 * 10^-6C
Distance between the two balloons = 23cm = 0.23m
9. Force acting between the two balloons is a force of attraction because they are unlike charges. Hence, the force between them is:
F = kQ1Q2/r^2
F = (9 *10^9 * 3.4 * 10^-6 * -5.1 * 10^-6)/(2.3 * 10^-1)^2
F = (1.56 * 10^-1)/(5.29 * 10^-2)
F = - 2.95N
10. Assuming that Balloon A has a mass, m, of 0.084kg, then:
F = ma
Where a = acceleration
a = F/m
a = -2.95/0.084
a = - 35.12m/s^2
The acceleration has a magnitude of 35.12m/s^2 and its direction is away from balloon B.
The negative sign shows that the balloon A is slowing down as it moves towards balloon B. Hence, it's velocity is reducing slowly.
Answer:
-47 °C
Explanation:
Speed of sound in air at sea level is:
v = 331 m/s + 0.6 m/s/°C T
where T is the temperature in Celsius.
The speed of sound is also the frequency times the wavelength:
v = fλ
Therefore:
fλ = 331 m/s + 0.6 m/s/°C T
(658 Hz) (0.46 m) = 331 m/s + 0.6 m/s/°C T
302.68 m/s = 331 m/s + 0.6 m/s/°C T
-28.32 m/s = 0.6 m/s/°C T
T = -47.2 °C
Rounding to two significant figures, the temperature is -47 °C.