1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
3 years ago
5

If a object started moving have did it’s velocity change?

Chemistry
1 answer:
Otrada [13]3 years ago
3 0

Answer:

the velocity did change

Explanation:

velocity is the rate of change of its position with respect to a frame of reference.

You might be interested in
The orderly geometric arrangement of atoms is called a crystalline solid. <br> a. True<br> b. False
Crank
a.True.

The ordely geometric arrangement of atmos is called a crystalline solid.
4 0
4 years ago
Read 2 more answers
How do you find the molecular formula from the empirical formula?
miskamm [114]
To find them you would have numbers of the elements in percentage or grams then you divide them by their molar mass to get their moles. From there you divide by the smallest number. Round it to two or one sig fig. If you have a number that is for ex. 2.5 you multiply it by 2 to make it whole as well the other whole numbers. Then to find the molecular formula the problem must give you another molar mass and using your empirical formula convert it to its molar mass then you divide them, larger number over smaller number. You should get a number round it to 1 sig fig. Now you use that number and multiply the subscripts on the empirical formula to get the molecular formula.
7 0
3 years ago
How much energy (in Joules) is needed to increase the temperature of 25 grams of glass by 5.0C. Aluminum Iron Glass Copper Water
vitfil [10]

Answer:

25 grams of glass by 5.oc aluminium iron glass copper water

4 0
3 years ago
At a certain temperature the vapor pressure of pure benzene is measured to be . Suppose a solution is prepared by mixing of benz
Marianna [84]

Answer:

P(C₆H₆) = 0.2961 atm

Explanation:

I found an exercise pretty similar to this, so i'm gonna use the data of this exercise to show you how to do it, and then, replace your data in the procedure so you can have an accurate result:

<em>"At a certain temperature the vapor pressure of pure benzene (C6H6) is measured to be 0.63 atm. Suppose a solution is prepared by mixing 79.2 g of benzene and 115. g of heptane (C7H16) Calculate the partial pressure of benzene vapor above this solution. Round your answer to 2 significant digits. Note for advanced students: you may assume the solution is ideal".</em>

<em />

Now, according to the data, we want partial pressure of benzene, so we need to use Raoul's law which is:

P = Xₐ * P°    (1)

Where:

P: Partial pressure

Xₐ: molar fraction

P°: Vapour pressure

We only have the vapour pressure of benzene in the mixture. We need to determine the molar fraction first. To do this, we need the moles of each compound in the mixture.

To get the moles:   n = m / MM

To get the molar mass of benzene (C₆H₆) and heptane (C₇H₁₆), we need the atomic weights of Carbon and hydrogen, which are 12 g/mol and 1 g/mol:

MM(C₆H₆) = (12*6) + (6*1) = 78 g/mol

MM(C₇H₁₆) = (7*12) + (16*1) = 100 g/mol

Let's determine the moles of each compound:

moles (C₆H₆) = 79.2 / 78 = 1.02 moles

moles (C₇H₁₆) = 115 / 100 = 1.15 moles

moles in solution = 1.02 + 1.15 = 2.17 moles

To get the molar fractions, we use the following expression:

Xₐ = moles(C₆H₆) / moles in solution

Xₐ = 1.02 / 2.17 = 0.47

Finally, the partial pressure is:

P(C₆H₆) = 0.47 * 0.63

<h2>P(C₆H₆) = 0.2961 atm</h2>

Hope this helps

7 0
3 years ago
A sample of gas has a density of 0.53 g/L at 225 K and under a pressure of 108.8 kPa. Find the density of the gas at 345 K under
sukhopar [10]

Answer:

\rho _2=0.22g/L

Explanation:

Hello!

In this case, since we are considering an gas, which can be considered as idea, we can write the ideal gas equation in order to write it in terms of density rather than moles and volume:

PV=nRT\\\\PV=\frac{m}{MM} RT\\\\P*MM=\frac{m}{V} RT\\\\P*MM=\rho RT

Whereas MM is the molar mass of the gas. Now, since we can identify the initial and final states, we can cancel out R and MM since they remain the same:

\frac{P_1*MM}{P_2*MM} =\frac{\rho _1RT_1}{\rho _2RT_2} \\\\\frac{P_1}{P_2} =\frac{\rho _1T_1}{\rho _2T_2}

It means we can compute the final density as shown below:

\rho _2=\frac{\rho _1T_1P_2}{P_1T_2}

Now, we plug in to obtain:

\rho _2=\frac{0.53g/L*225K*68.3kPa}{345K*108.8kPa}\\\\\rho _2=0.22g/L

Regards!

8 0
3 years ago
Other questions:
  • Describe the pattern that thermal energy follows as it moves
    12·1 answer
  • Which compound is most likely to follow second-order kinetics in a substitution reaction? (ch3)2chbr ch3ch2br (ch3)3cch2br ch3br
    7·1 answer
  • How could gamma rays,for example change something irreversibly
    5·2 answers
  • Which ion is formed when an atom of fluorine (F) gains one electron
    13·1 answer
  • What is the name of this compound? H single bonded to N with a pair of electron dots above and a single bond to H below, single
    11·1 answer
  • Change 5.20 moles of c3h6o2to grams
    14·1 answer
  • Which statement best describes the energy of activation?
    5·2 answers
  • A graduated cylinder with just water has a volume of 20.0 mL. When a 25.0 g piece of zinc alloy is added, the new volume is 23.2
    12·1 answer
  • Pls help 10 points<br> Plsplsplspslspslspslsspsls
    6·2 answers
  • Only answer if you know 100% its correct. this means if your'e NOT sure, don't answer.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!