Answer:
An ion channel, more specifically a calcium channel.
Explanation:
The electrical activity of the cells is regulated by ion channels. Calcium channels, also referred as the voltage-gated calcium channels constitute one group of a superfamily of ion channels. A change in voltage across the membrane or small molecules triggers calcium channels to open, allowing calcium to flow into the cell. Inside the cell, calcium acts as a second messenger, it binds to calcium sensitive proteins to induce different responses and support several functions such as muscle contraction, hormone and neurotransmitter secretion, gene regulation, activation of other ion channels, control of action potentials, cell survival, etc.
Answer:
Nonrenewable energy resources, like coal, nuclear, oil, and natural gas, are available in limited supplies. This is usually due to the long time it takes for them to be replenished. Renewable resources are replenished naturally and over relatively short periods of time
Main sequence starts maybe
Answer:
The [H⁺] for this soluton is 2*10⁻³ M
Explanation:
pH, short for Hydrogen Potential and pOH, or OH potential, are parameters used to measure the degree of acidity or alkalinity of substances.
The values that compose them vary from 0 to 14 and the pH value can be directly related to that of pOH by means of:
pH + pOH= 14
In this case, pOH=11.30, so
pH + 11.30= 14
Solving:
pH= 14 - 11.30
pH= 2.7
Mathematically the pH is the negative logarithm of the molar concentration of the hydrogen or proton ions (H⁺) or hydronium ions (H₃O):
´pH= - log [H⁺] = -log [H₃O]
Being pH=2.7:
2.7= - log [H⁺]
[H⁺]= 10⁻² ⁷
[H⁺]=1.995*10⁻³ M≅ 2*10⁻³ M
<u><em>The [H⁺] for this soluton is 2*10⁻³ M</em></u>
Answer is: because pure liquids (<span>shown in </span>chemical reactions<span> by appending (</span>l)<span> to the </span>chemical formula) and solids (<span>shown in </span>chemical equations by appending (s)<span> to the </span>chemical formula) not go in to he equilibrium constant expression, only gas state (shown in chemical reactions by appending (g) to the chemical formula) reactants and products go in to he equilibrium constant expression.
For example, equilibrium constant expression Kp for reaction:
A(s) + 2B(s) ⇄ 4C(g) + D(g).<span>
will be: Kp = [C]</span>⁴<span>·[D].
But for reaction </span>A(g) + 2B(g) ⇄ 4C(g) + D(g), will be:<span>
Kp = [C]</span>⁴<span>·[D] / [A]·[B]².</span>