1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
4 years ago
15

You walk out to the edge of a 2,384 m. cliff and you toss a rock down to watch it drop. What is the rocks acceleration?

Physics
1 answer:
likoan [24]4 years ago
3 0

Answer:

9.8m/s

Explanation:

Wherever you're on the earth's surface, gravitational force remains the same and it does not matter either its a rock that's being tossed or a sheet of paper, the acceleration remains 9.8m/s only. *Condition applied=air resistance neglected

You might be interested in
How does the junkyard magnet let go of metal?
klemol [59]

Answer:

Wrecking yards employ extremely powerful electromagnets to move heavy pieces of scrap metal or even entire cars from one place to another. ... This creates a magnetic field around the coiled wire, magnetizing the metal as if it were a permanent magnet

Explanation:

7 0
3 years ago
Weight is the direct result of :<br><br> A. Distance <br><br> B. The amount of gravity being pulled
zheka24 [161]
B i think ........................
4 0
3 years ago
Describe a situation where your body can act as a lightning conductor.
Naddika [18.5K]

When someone is struct by lightning, the electricity passes through the body, into the earth. Here, our body acts as a lightning conductor to complete the earthing process.

7 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Please please help
dsp73

Answer:

true

Explanation:

The law of conservation of charge states that whenever electrons are transferred between objects, the total charge remains the same.

3 0
3 years ago
Other questions:
  • What is the displacement from 4 to 10 seconds? How do you know?
    15·1 answer
  • In science what is the requirement of doing work?
    12·1 answer
  • Rigel’s luminosity is about _____ times the sun’s luminosity.
    15·1 answer
  • If an object is dropped from a height of 144 feet, the function h(t)= -16t^2+144 gives the height of the object after t seconds.
    7·1 answer
  • Consider an electron and a proton that are initially at rest and are separated by 2.00 nm. Neglecting any motion of the much mor
    10·1 answer
  • A harmonic oscillator begins to vibrate with an amplitude of 1.6 m, but after a time of 1.5 minutes, the amplitude has dropped t
    14·1 answer
  • A sailboat took 25 hours to cover 1/4 of a journey. Then, it
    11·1 answer
  • As the bell rings, which energy transformation occurs? A. Mechanical energy is converted into sound energy. B. Chemical energy i
    15·2 answers
  • Is power a vector quantity​
    14·1 answer
  • If your friend has a a mass of 60 kg, how much does the your friend weigh?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!