when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
Blood pressure is greater in feet because of gravity
Answer: 
Explanation:
The acceleration of an object can be calculated by using Newton's second law:

where
F is the net force applied on the object
m is the mass of the object
a is its acceleration
In this problem, we have F=125 N and m=25.0 kg, so we can rearrange the equation to calculate the acceleration:

Answer:
They both rises to same height.
Explanation:
When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.
Here the height is independent on the mass of an object and its only depend on velocity.
Now according to the question, two objects have same velocity but they have different masses.
Therefore, they rises to the same height because height will not change with mass.
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San