Answer:
True
Explanation:
Confirmation Bias is the tendency to look for information that supports, rather than rejects, one’s preconceptions, typically by interpreting evidence to confirm existing beliefs while rejecting or ignoring any conflicting data
Answer:
178.67K
Explanation:
PV=nRT
T=PV/nR
= 1.072atm*20L/1.485mol*0.0821LatmK^-1
=178.67K
<u>Answer:</u> The atomic weight of the second isotope is 64.81 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of atomic masses of each isotope each multiplied by their natural fractional abundance
Formula used to calculate average atomic mass follows:
.....(1)
We are given:
Let the mass of isotope 2 be 'x'
Mass of isotope 1 = 62.9 amu
Percentage abundance of isotope 1 = 69.1 %
Fractional abundance of isotope 1 = 0.691
Mass of isotope 2 = 'x'
Percentage abundance of isotope 2 = 30.9%
Fractional abundance of isotope 2 = 0.309
Average atomic mass of copper = 63.5 amu
Putting values in equation 1, we get:
![\text{Average atomic mass of copper}=[(62.9\times 0.691)+(x\times 0.309)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D%5B%2862.9%5Ctimes%200.691%29%2B%28x%5Ctimes%200.309%29%5D)

Hence, the atomic weight of second isotope will be 64.81 amu.
In a chemical equation, the symbol that means “dissolved in water” is (aq).
Answer:
429.4 kJ are absorbed in the endothermic reaction.
Explanation:
The balanced chemical equation tells us that 1168 kJ of heat are absorbed in the reaction when 4 mol of NH₃ (g) react with 5 mol O₂ (g).
So what we need is to calculates how many moles represent 25 g NH₃(g) and calculate the heat absorbed. (NH₃ is the limiting reagent)
Molar Mass NH₃ = 17.03 g/mol
mol NH₃ = 25.00 g/ 17.03 g/mol = 1.47 mol
1168 kJ /4 mol NH₃ x 1.47 mol NH₃ = 429.4 kJ