Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4
Answer:
2.25 g
Explanation:
The mass of the solid X must be the total mass (beaker + solid X) less than the mass of the beaker. Then:
mass of the solid X = 34.40 - 32.15
mass of the solid X = 2.25 g
The difference of 0.25 g must occur for several problems: an incorrect weight in the balance, the configuration of the balance, the solid can be hydrophilic and absorbs water, and others.
Answer:
A) An ionic bond is much stronger than most covalent bonds.
Explanation:
D) Ionic compounds have high melting points causing them to be solid at room temperature, and conduct electricity when dissolved in water. Covalent compounds have low melting points and many are liquids or gases at room temperature.
C) An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.
A) Covalent bonds are stronger if you compare with ionic molecules, because their molecular orbital overlap is bigger. However, ionic molecules form lattices, thus the energy to break this lattice bond is stronger hence the ionic bond is stronger.
Answer:
2.57 g of H₂
Solution:
The Balance Chemical Equation is as follow,
N₂ + 3 H₂ → 2 NH₃
According to Balance equation,
34.06 g (2 moles) NH₃ is produced by = 6.04 g (3 moles) of H₂
So,
14.51 g of NH₃ will be produced by = X g of H₂
Solving for X,
X = (14.51 g × 6.04 g) ÷ 34.06 g
X = 2.57 g of H₂
Answer:
i donr reagly knove
Explanation: yeah i dont know