1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
8

Change in v= 9.8 m/s2xt. The diagram shows a ball falling toward Earth in a vacuum.

Physics
2 answers:
Tresset [83]3 years ago
5 0

Answer:

Option A. 39.2 m/s

Explanation:

From the question given above, the following data were obtained:

Initial velocity (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) = 4 s

Final velocity (v) =?

v = u + gt

Since the initial velocity (u) is 0, the above equation becomes:

v = gt

Thus, inputting the value of g and t, we can obtain the value of v as shown below:

v = 9.8 × 4

v = 39.2 m/s

Therefore, the velocity of the ball at 4 s is 39.2 m/s.

aliya0001 [1]3 years ago
5 0

39.2 m/s

Explanation

a free-falling object is an object that is falling under the sole influence of gravity. A free-falling object has an acceleration of 9.8 m/s/s, downward (on Earth). This numerical value for the acceleration of a free-falling object is such an important value that it is given a special name. It is known as the acceleration of gravity - the acceleration for any object moving under the sole influence of gravity. A matter of fact, this quantity known as the acceleration of gravity is such an important quantity that physicists have a special symbol to denote it - the symbol g. The numerical value for the acceleration of gravity is most accurately known as 9.8 m/s/s. There are slight variations in this numerical value (to the second decimal place) that are dependent primarily upon on altitude. We will occasionally use the approximated value of 10 m/s/s in The Physics Classroom Tutorial in order to reduce the complexity of the many mathematical tasks that we will perform with this number. By so doing, we will be able to better focus on the conceptual nature of physics without too much of a sacrifice in numerical accuracy.

You might be interested in
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
an electron, a proton and a deuteron move in a magnetic field with same momentum perpendicularly. the ratio of the radii of thei
wel

If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:

  • 1: √2 : 1

<h3>How is the ratio of the perpendicular parts obtained?</h3>

To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle  = 4m.

The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:

r = √m/e : √2m/e : √4m/2e

When resolved, the resulting ratios will be:

1: √2 : 1

Learn more about the radii of their circular paths here:

brainly.com/question/16816166

#SPJ4

​

6 0
2 years ago
Can someone give me an objective and subjective statement example please
shusha [124]

Answer:

Objective: It is raining. Subjective: I love the rain!

Explanation:

Anything objective sticks to the facts, but anything subjective has feelings. Objective and subjective are opposites.

(Hope this helps can I pls have brainlist (crown)☺️)

7 0
2 years ago
If 7 ounces of a sports drink contains 110 milligrams of sodium, what is the total number of milligrams of sodium in 20 ounces o
ehidna [41]

so you just take 110 divided by 7 and then you get the answer and times tthat by 20 and you get you answer which is 314.28 milligrams of sodium in 20 ounces of the sports drink.

7 0
3 years ago
What happens to the radiation coming from the Sun and heading towards Earth?
miss Akunina [59]

Answer: some of the energy are shielded away by the ozone layer,

The rest warm the earth

Explanation:

Not all energy from the sun reaches the earth, some of the energy are shielded away by the ozone layer while the rest energy warm the earth

7 0
3 years ago
Other questions:
  • A 12.0 g bullet was fired horizontally into a 1 kg block of wood. The bullet initially had a speed of 250 m/s. The block of wood
    14·1 answer
  • Scientific notation for 0.0058201
    9·1 answer
  • Relate RNA to translation and transcription
    14·1 answer
  • Describe, in detail, an experiment in which you could determine the power for a period of several hours. You must be able to tel
    7·2 answers
  • Which of these components is not necessary for current to flow in a series or parallel circuit?
    11·1 answer
  • Adanna is watching waves on the sea go past two buoys. She knows the buoys are 20 metres apart.
    14·2 answers
  • Is the following chemical reaction balanced?<br> 2H202-H2O + O2<br> yes<br> no
    6·1 answer
  • Two boys are at the top of a waterslide at Seven Peaks Water Park. One boy (boy A) slips off the top of the tower and falls unob
    7·1 answer
  • 8. A spring of spring constant 4 N/m is stretched 0.5 meters. How strong is the restoring force?
    13·1 answer
  • A closed curve encircles several conductors. The line integral around this curve is (image attached below)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!