Answer:
31.9 °C
Explanation:
The formula for the heat q absorbed by an object is
q = mCΔT where ΔT = (T₂ - T₁)
Data:
q = 12.35 cal
m = 19.75 g
C = 0.125 cal°C⁻¹g⁻¹
T₂ = 37.0 °C
Calculations
(a) Calculate ΔT
q = mCΔT
12.35 cal = 19.25 g × 0.125 cal°C⁻¹g⁻¹ × ΔT
12.35 = 2.406ΔT °C⁻¹
ΔT = 12.35/(2.406 °C⁻¹) = 5.13 °C
(b) Calculate T₂
ΔT = T₂ - T₁
T₁ = T₂ - ΔT = 37.0 °C - 5.13 °C = 31.9 °C
The original temperature was 31.9 °C.
The correct answer is C. because it could lead to an increase in ocean levels
Answer:
What is the reaction quotient, Q, for this system when [N2] = 2.00 M, [H2] = 2.00 M, and [NH3] = 1.00 M at 472°C?
A. 0.0625
How does Q compare to Keq?
B. Q < Keq
Explanation:
The answer is (2) higher vapor pressure and weaker intermolecular forces. Propanone has a lower boiling point, so it is more volatile than water. Propanone's vapor pressure is, therefore, higher than that of water at 50 degrees Celsius. Propanone is more volatile due to the fact that the intermolecular forces that hold its molecuels together are not as strong as those that hold together molecules of water. Since the IMFs are weaker, it takes less thermal energy to break individual molecules free of each other.
The answears are in the attached photo.