Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
There are a total of 4 elements
Answer: it would release heat because the thermal energy it absorbed to become a gas. so it would release heat. hope this helps :)
Explanation:
The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
Answer:
Compound are defined as the containing two or more different element .
(1) Ionic compound and (2) Covalent compound.
Explanation:
Covalent compound :- covalent compound are the sharing of electrons two or more atom.
Covalent compound are physical that lower points and compared to ionic .
Covalent compound that contain bond are carbon monoxide (co), and methane .
Covalent compound are share the pair of electrons.
Covalent compound are bonding a hydrogen atoms electron.
Ionic compound a large electrostatic actions between atoms.
Ionic compound are higher melting points and covalent compound.
Ionic compound are bonding a nonmetal electron.
Ionic electron can be donate and received ionic bond.
Ionic compound bonding kl.