1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
2 years ago
12

Wetlands provide habitats for many living things because of their sheltered waters and

Chemistry
2 answers:
777dan777 [17]2 years ago
7 0
The choices can be found elsewhere and as follows:

<span>a. large supply of nutrients.
b. thick layer of mud.
c. lack of insects
d. ability to prevent floods.
</span>
I believe the correct answer is option A. Wetlands provide habitats for many living things because of their sheltered waters and large supply of nutrients. Hope this answers the question.
notka56 [123]2 years ago
4 0

Answer:

A.

Explanation:

Large pile of nutrients

You might be interested in
46.6 grams of mercury II sulfate (HgSO4) reacts with an excess of sodium Chloride (NaCl). How many grams of mercury II chloride
slega [8]

Answer:

m_{HgCl_2}=42.7gHgCl_2

Explanation:

Hello,

In this case, the undergoing chemical reaction is:

HgSO_4+2NaCl\rightarrow HgCl_2+Na_2SO_4

In such a way, the mercury II sulfate (molar mass 296.65g/mol) is in a 1:1 molar ratio with the mercury II chloride (molar mass 271.52g/mol), for that reason the stoichiometry to find mass in grams of mercury II chloride turns out:

m_{HgCl_2}=46.6gHgSO_4*\frac{1molHgSO_4}{296.65 gHgSO_4}*\frac{1molHgCl_2}{1molHgSO_4} *\frac{271.52gHgCl_2}{1molHgCl_2} \\\\m_{HgCl_2}=42.7gHgCl_2

Best regards.

3 0
2 years ago
If 8.50 g of phosphorus reacts with hydrogen gas at 2.00 atm in a 10.0-L container at 298 K, calculate the moles of PH3 produced
ahrayia [7]

Answer:

The moles of PH₃ produced are 0.2742 and the total number of moles of gas present at the end of the reaction is 0.6809.

Explanation:

Phosphorus reacts with H₂ according to the balanced equation:

P₄ (s) + 6 H₂ (g) ⇒ 4 PH₃ (g)

By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:

  • P₄: 1 mole
  • H₂: 6 moles
  • PH₃:4 moles

Being the molar mass of the compounds:

  • P₄: 124 g/mole
  • H₂: 2 g/mole
  • PH₃: 34 g/mole

The following mass amounts of each compound participate in the reaction:

  • P₄: 1 mole* 124 g/mole= 124 g
  • H₂: 6 mole* 2 g/mole= 12 g
  • PH₃: 4 moles* 34 g/mole= 136 g

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P * V = n * R * T

In this case you know:

  • P= 2 atm
  • V= 10 L
  • n= ?
  • R= 0.082 \frac{atm*L}{mol*K}
  • T= 298 K

Replacing:

2 atm*10 L= n*0.082 \frac{atm*L}{mol*K} *298 K

and solving you get:

n=\frac{2 atm*10 L}{0.082\frac{atm*L}{mol*K}*298 K }

n=0.818 moles

The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.

To determine the limiting reagent, you can use a simple rule of three as follows: if 6 moles of H₂ react with 124 g of P₄, 0.818 moles of H₂ with how much mass of P₄ will it react?

mass of P_{4}=\frac{0.818 moles of H_{2}*124 grams of P_{4}}{6 moles of H_{2}}

mass of P₄= 16.90 grams

But 16.90 grams of P₄ are not available, 8.50 grams are available. Since you have less mass than you need to react with 0.818 moles of H₂, phosphorus P₄ will be the limiting reagent.

Then you can apply the following rules of three:

  • If 124 grams of P₄ produce 4 moles of PH₃, 8.50 grams of P₄, how many moles do they produce?

moles of PH_{3} =\frac{8.5 grams of P_{4}*4 moles of PH_{3}  }{124grams of P_{4}}

moles of PH₃=0.2742

  • If 124 grams of P₄ react with 6 moles of H₂, 8.50 grams of P₄ with how many moles of H₂ do they react?

moles of H_{2} =\frac{8.5 grams of P_{4}*6 moles of H_{2}  }{124grams of P_{4}}

moles of H₂= 0.4113

If you have 0.818 moles of H₂, the number of moles of gas H₂ present at the end of the reaction is calculated as:

0.818 - 0.4113= 0.4067

Then the total number of moles of gas present at the end of the reaction will be the sum of the moles of PH₃ gas and H₂ gas that did not react:

0.2742 + 0.4067= 0.6809

Finally, <u><em>the moles of PH₃ produced are 0.2742 and the total number of moles of gas present at the end of the reaction is 0.6809.</em></u>

5 0
2 years ago
The elementary reaction 2H2O(g)↽−−⇀2H2(g)+O2(g) 2H2O(g)↽−−⇀2H2(g)+O2(g) proceeds at a certain temperature until the partial pres
Dima020 [189]

Answer:

6.25\times 10^{-6} is the value of the equilibrium constant at this temperature.

Explanation:

Equilibrium constant in terms of partial pressure is defined as the ratio of partial pressures of products to the partial pressures  of reactants each raised to the power equal to their stoichiometric ratios. It is expressed as K_{p}

2H_2O(g)\rightleftharpoons 2H_2(g)+O_2(g)

Partial pressures at equilibrium:

p^o_{H_2O}=0.070 atm

p^o_{H_2}=0.0035 atm

p^o_{O_2}=0.0025 atm

The equilibrium constant in terms of pressures is given as:

K_p=\frac{(p^o_{H_2})^2\times (p^o_{O_2})}{(p^o_{H_2O})62}

K_p=\frac{(0.0035 atm)^2\times 0.0025 atm}{(0.070 atm)^2}=6.25\times 10^{-6}

6.25\times 10^{-6} is the value of the equilibrium constant at this temperature.

5 0
3 years ago
Adam observed properties of four different waves and
cupoosta [38]

Answer:

D)The sound quality for these waves cannot be compared.

Explanation:

I've done it on e2020

5 0
3 years ago
Read 2 more answers
What statement is FALSE giving brainliest
Sergio [31]

Answer:

Explanation: C is the answer

8 0
2 years ago
Other questions:
  • Wolff-kishner reduction (hydrazine, koh, ethylene glycol, 130°c) of the compound shown gave compound
    6·1 answer
  • Which of the following is a benefit of having a standard measurement system that can be used by scientists worldwide?
    5·1 answer
  • Explain why water has a higher boiling point than carbon iv oxide and the two are simple molecular structures
    10·1 answer
  • Acetonitrile major species present when dissolved in water
    8·1 answer
  • An atom of oxygen has six valence electrons. In nature, oxygen is a diatomic molecule and is usually found in the form O2. Why w
    6·1 answer
  • What two ways do nuclear power reactors harm the enviornment
    8·1 answer
  • A 100.00-mL sample of 0.2000M glycine, A+ form (see structure below), was titrated with 0.2000M of NaOH. Ka1 of glycine = 3.16x1
    6·1 answer
  • A scientist wants to make a solution of tribasic sodium phosphate, Na3PO4, for a laboratory experiment. How many grams of Na3PO4
    5·1 answer
  • Pls 50 points right answer gets brainliest
    6·2 answers
  • A balloon filled with helium gaz occupiea 2.50 L at 25°C and 1.00 atm. When released it rizez to an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!