Sound is a longitudinal wave.
Answer:
15.106 N
Explanation:
From the given information,
The weight of the bucket can be calculated as:

The mass of the water accumulated in the bucket after 3.20s is:


To determine the weight of the water accumulated in the bucket, we have:



For the speed of the water before hitting the bucket; we have:


v = 8.4 m/s
Now, the force required to stop the water later when it already hit the bucket is:


F = 1.68 N
Finally, the reading scale is:
= 7.154 N + 6.272 N + 1.68 N
= 15.106 N
The correct answer to this question is D
Answer:
L = - 1361.591 k Kgm/s
Explanation:
Given
mA = 55.2 Kg
vA = 3.45 m/s
rA = 6.00 m
mB = 62.4 Kg
vB = 4.23 m/s
rB = 3.00 m
mC = 72.1 Kg
vC = 4.75 m/s
rC = - 5.00 m
then we apply the equation
L = (mv x r)
⇒ LA = mA*vA x rA = 55.2 *(3.45 i)x(6 j) = (1142.64 k) Kgm/s
⇒ LB = mB*vB x rB = 62.4 *(4.23 j)x(3 i) = (- 791.856 k) Kgm/s
⇒ LC = mC*vC x rC = 72.1 *(- 4.75 j)x(- 5 i) = (- 1712.375 k) Kgm/s
Finally, the total counterclockwise angular momentum of the three joggers about the origin is
L = LA + LB + LC = (1142.64 - 791.856 -1712.375) k Kgm/s
L = - 1361.591 k Kgm/s
Answer:
v= 449.8 m/s
Explanation:
Given data
Frequency= 346Hz
Wave length= 1.4m
The expression below is used to find the speed

substitute

Hence the speed is v= 449.8 m/s