Answer:
Let M1 = 8 kg and M2 = 34 kg
F = M a = (M1 + M2) a
F = M2 g the net force accelerating the system
M2 g = (M1 + M2) a
a = M2 / (M1 + M2) g = 34 / (42) g = .81 g = 7.9 m/s^2
I think it's C, longer wave length.
Answer:
Explanation:
P = mgh/t = 20(9.8)(4) / 5 = 156.8 W(atts)
Explanation:
It is given that,
Potential difference between the ends of a rod, V = 1.1 V
Length of the rod, l = 10 cm = 0.1 m
Area of cross section of the rod, 
The resistivity of graphite, 
(a) Let R is the resistance of the rod. It is given by :



So, the resistance of the rod is 0.833 ohms.
(b) Let I is the current flowing in the wire. It can be calculated using the Ohm's law as :


I = 1.32 A
(c) Let E is the electric field inside the rod. The electric field in terms of potential difference is given by :


E = 11 V/m
Hence, this is the required solution.