You must know the concentration of the acetic acid. Suppose the concentration is 0.1 M. The solution is as follows:
CH₃COOH → CH₃COO⁻ + H⁺
I 0.1 0 0
C -x +x +x
E 0.1 - x x x
Ka = (x)(x)/(0.1 - x)
1.8×10⁻⁵ = x²/(0.1 - x)
Solving for x,
x = 1.333×10⁻³ = H⁺
pH = -log[H⁺] = -log(1.333×10⁻³)
pH = 2.88
N₂ : limiting reactant
H₂ : excess reactant
<h3>Further e
xplanation</h3>
Given
mass of N₂ = 100 g
mass of H₂ = 100 g
Required
Limiting reactant
Excess reactant
Solution
Reaction
<em>N₂+3H₂⇒2NH₃</em>
mol N₂(MW=28 g/mol) :

mol H₂(MW= 2 g/mol) :

A method that can be used to find limiting reactants is to divide the number of moles of known substances by their respective coefficients, and small or exhausted reactans become a limiting reactants
From the equation, mol ratio N₂ : H₂ = 1 : 3, so :

N₂ becomes a limiting reactant (smaller ratio) and H₂ is the excess reactant
1.icosahedralb2.helicalc3.complexa
Answer:
d
Explanation:
protons and neutrons are in the nucleus which i where most of the mass of an atom comes from