<h3>ANSWER:</h3>
(C) KBr
<h3>EXPLANATION:</h3>
An ionic compound is made up of a metal and a nonmetal. K is a metal while bromine is a nonmetal. Thus K transfers its one electron to bromine in order to form an ionic compound.
So if it is 2.35L at the temperature 20.0^C and you want the volume at -5.00^C this is hw you would solve it for example 20.0^C to 2.00L it would be 10 degrees per Liter so it would be here 10 degrees every liter so you would do 20.0 % 2.35 = / then find the answer and then find out how many degrees that answer is off of -5.00 then once you get that divide -5.00 with that answer.<span>
</span>
Answer:
Based on compounds given, NO reaction occurs
Explanation
The compounds should exchange ions to generate a driving force that pulls the reaction to completion. => Example ...
The Molecular Equation is ...
NH₄Cl(aq) + AgNO₃(aq) => NH₄NO₃(aq) + AgCl(s)
Silver chloride forms in this reaction as a solid precipitate because of its low solubility and is the 'Driving Force' of the reaction. Driving Force is a more stable compound than any on the reactant side and when formed leaves the reaction system as a solid ppt, liquid weak electrolyte (i.e., weak acid or weak base) or a gas decomposition product of a weak electrolyte.
The Ionic Equation is ...
NH₄⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) => NH₄⁺(aq) + NO₃⁻(aq) + AgCl(s)
This shows all ions from reaction plus the Driving Force of the reaction.
The Net Ionic Equation is ...
Ag⁺(aq) + Cl⁻(aq) => AgCl(s)
The Net Ionic Equation shows only those ions undergoing reaction. The NH₄⁺ and NO₃⁻ ions are 'Spectator Ions' and do not react.
Attached is a reference sheet for determining the Driving Force of a Metathesis Double Replacement Reaction. Suggest reviewing acid-base theories and the products of decomposition type reactions.
Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.