Answer:
8. 2.75·10^-4 s^-1
9. No, too much of the carbon-14 would have decayed for radiation to be detected.
Explanation:
8. The half-life of 42 minutes is 2520 seconds, so you have ...
1/2 = e^(-λt) = e^(-(2520 s)λ)
ln(1/2) = -(2520 s)λ
-ln(1/2)/(2520 s) = λ ≈ 2.75×10^-4 s^-1
___
9. Reference material on carbon-14 dating suggests the method is not useful for time periods greater than about 50,000 years. The half-life of C-14 is about 5730 years, so at 65 million years, about ...
6.5·10^7/5.73·10^3 ≈ 11344
half-lives will have passed. Whatever carbon 14 may have existed at the time will have decayed completely to nothing after that many half-lives.
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
Answer:
you divide the distance by the time it takes to travel that same distance, then you add your direction to it.
Answer:
1.045 m from 120 kg
Explanation:
m1 = 120 kg
m2 = 420 kg
m = 51 kg
d = 3 m
Let m is placed at a distance y from 120 kg so that the net force on 51 kg is zero.
By use of the gravitational force
Force on m due to m1 is equal to the force on m due to m2.



3 - y = 1.87 y
3 = 2.87 y
y = 1.045 m
Thus, the net force on 51 kg is zero if it is placed at a distance of 1.045 m from 120 kg.
The energy would be transferred from the objects. Also do not forget, add direction to your answer.