1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
2 years ago
14

Need help on number 5 and 6

Physics
2 answers:
Hitman42 [59]2 years ago
5 0

Answer:

b and c

Explanation:

hopes this helps i took the test.

Whitepunk [10]2 years ago
4 0

Answer:

jowieahudsfnkdmlew2l,poeq3riugjnkfmdko

Explanation:

You might be interested in
If there is a break at any point in a series circuit the current will
Tomtit [17]

Answer:

not work

Explanation:

in a series circuit, everything meaning the electrons are flowing on one path, therefore, it wouldn continue to work.

8 0
3 years ago
URGENT PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST !!!
Svetlanka [38]

Answer:

An electrical current

Explanation:

An electrical current

4 0
3 years ago
A locomotive approaches its next stop and accelerates at -0.12 m/s^2, coming to a complete stop in 30 seconds. This motion could
Masja [62]

Answer:

<em>Answer: positive velocity & negative acceleration</em>

Explanation:

<u>Accelerated Motion</u>

Both the velocity and acceleration are vectors because they have magnitude and direction. When the motion is restricted to one dimension, i.e. left-right or up-down, the direction is marked with the sign according to some preset reference.

The locomotive is moving at a certain speed with a (so far) unknown sign but the acceleration has a negative sign. Since the locomotive comes to a complete stop it means the velocity and the acceleration are of opposite signs.

Thus the velocity is positive.

Answer: positive velocity & negative acceleration

4 0
3 years ago
A cross-country skier slides horizontally along the snow and comes to rest after sliding a distance of 11 m. If the coefficient
Basile [38]

Answer:

v_o = 4.54 m/s  

Explanation:

<u>Knowns  </u>

From equation, the work done on an object by a constant force F is given by:  

W = (F cos Ф)S                                   (1)  

Where S is the displacement and Ф is the angle between the force and the displacement.  

From equation, the kinetic energy of an object of mass m moving with velocity v is given by:  

K.E=1/2m*v^2                                       (2)

From The work- energy theorem , the net work done W on an object equals the difference between the initial and the find kinetic energy of that object:  

W = K.E_f-K.E_o                                 (3)

<u>Given </u>

The displacement that the sled undergoes before coming to rest is s = 11.0 m and the coefficient of the kinetic friction between the sled and the snow is μ_k = 0.020  

<u>Calculations</u>

We know that the kinetic friction force is given by:

f_k=μ_k*N

And we can get the normal force N by applying Newton's second law to the sled along the vertical direction, where there is no acceleration along this direction, so we get:  

∑F_y=N-mg

     N=mg

Thus, the kinetic friction force is:  

f_k = μ_k*N  

Since the friction force is always acting in the opposite direction to the motion, the angle between the force and the displacement is Ф = 180°.  

Now, we substitute f_k and Ф into equation (1), so we get the work done by the friction force:  

W_f=(f_k*cos(180) s

      =-μ_k*mg*s

Since the sled eventually comes to rest, K.E_f= 0 So, from equation (3), the net work done on the sled is:  

W= -K.E_o    

Since the kinetic friction force is the only force acting on the sled, so the net work on the sled is that of the kinetic friction force  

W_f= -K.E_o  

From equation (2), the work done by the friction force in terms of the initial speed is:  

W_f=-1/2m*v^2  

Now, we substitute for W_f= -μ_k*mg*s, and solving for v_o so we get:  

-μ_k*mg*s = -1/2m*v^2  

v_o = √ 2μ_kg*s

Finally, we plug our values for s and μ_k, so we get:  

v_o = √2 x (0.020) x (9.8 m/s^2) x (11.0 m) = 4.54 m/s  

v_o = 4.54 m/s  

6 0
3 years ago
Read 2 more answers
A piston–cylinder assembly contains 5.0 kg of air, initially at 2.0 bar, 30 oF. The air undergoes a process to a state where the
vladimir2022 [97]

Answer:

The work and heat transfer for this process is = 270.588 kJ

Explanation:

Take properties of air from an ideal gas table.  R = 0.287 kJ/kg-k

The Pressure-Volume relation is <em>PV</em> = <em>C</em>

<em>T = C </em> for isothermal process

Calculating for the work done in isothermal process

<em>W</em> = <em>P</em>₁<em>V</em>₁ ln[\frac{P_{1} }{P_{2} }]

   = <em>mRT</em>₁ln[\frac{P_{1} }{P_{2} }]      [∵<em>pV</em> = <em>mRT</em>]

   = (5) (0.287) (272.039) ln[\frac{2.0}{1.0}]

   = 270.588 kJ

Since the process is isothermal, Internal energy change is zero

Δ<em>U</em> = mc_{v}(T_{2}  - T_{1} ) = 0

From 1st law of thermodynamics

Q = Δ<em>U  </em>+ <em>W</em>

   = 0 + 270.588

   = 270.588 kJ

4 0
3 years ago
Other questions:
  • If the brakes are applied and the speed of the car is reduced to 13 m/s in 17 s , determine the constant deceleration of the car
    9·1 answer
  • Precipitation is most likely occurring at A because it is located
    13·1 answer
  • Electromagnetic waves differ only in their _____, their energy, and their frequency.
    13·1 answer
  • Describe any major landmarks (buildings, bridges, historical sites, etc.) that were destroyed during the valdivia earthquake.
    14·1 answer
  • Sebanyak 80g emas bersuhu 30°C diberi kalor sebesar 1512 J.Jika kalor jenis emas 126 J/kg K,suhu akhir emas setelah diberi kalor
    10·1 answer
  • Solar-powered cars use energy from the Sun to work. A panel on the car absorbs light energy from the Sun, which
    15·2 answers
  • The net external force on the propeller of a 3.8 kg model airplane is 8.2 N forward.
    13·1 answer
  • Help.. mee..<br><br><br> ;-; <br> Dont answer if you dont know I dont want to fail this
    15·2 answers
  • If you run at 12 m/s fr 15 minutes, how far will you go
    10·1 answer
  • A cylinder-piston system contains an ideal gas at a pressure of 1.5 105 pa.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!