They are positive and remain inside the nucleus.
Explanation:
When m=<em>mass</em>
G=<em>a</em><em>c</em><em>c</em><em>e</em><em>l</em><em>e</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>d</em><em>u</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>gravity</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>H</em><em>=</em><em>h</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>
<em>U</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em>u</em><em>l</em><em>a</em>
<em>M</em><em>g</em><em>h</em>
<em>(</em><em>M</em><em>=</em><em>6</em><em>, </em><em>g</em><em>=</em><em>10</em><em>,</em><em>h</em><em>=</em><em>?</em><em>) </em>
6×10×h
=60joules
Explanation:
It is given that,
Mass of the truck, m = 2000 kg
Initial velocity of the truck, u = 34 km/h = 9.44 m/s
Final velocity of the truck, v = 58 km/h = 16.11 m/s
(a) Change in truck's kinetic energy, 



(b) Change in momentum of the truck, 


Hence, this is the required solution.
Answer:
10,000
Explanation:
200,000/20 = power needed
200,000/20 = 10,000
Hope this Helps!
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4