(a) The free body of all the forces include, frictional force, weight of the box acting perpendicular and another acting parallel to the plane.
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
<h3>
Free body diagram</h3>
The free body diagram of all the forces on the box is obtained by noting the upward force and downward forces on the box as shown below;
/ W2
Ф → Ff
↓W1
where;
- Ff is the frictional force resisting the down motion of the box
- W1 is the perpendicular component of the box weight = Wcos(33)
- W2 is the parallel component of the box weight = Wsin(33)
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
Learn more about free body diagram of inclined objects here: brainly.com/question/4176810
Answer: I didn't see a difference because the large ball's vertical displacement and velocity are the same as the small one's.
Explanation:
Explanation:
Given:
v₀ = 250 mph
v = 0 mph
t = 25 s
Find: a
v = at + v₀
(0 mph) = a (25 s) + (250 mph)
a = -10 mph/s
As ball is projected up in air at an angle of 45 degree without any air resistance
Let the initial speed will be v
now we will have
In x direction

in y direction

now displacement in x direction

displacement in y direction

now from above two equations we have


so above equation is a quadratic equation and hence it will be a parabolic curve
so correct answer will be
<em>C. parabolic curve.</em>