As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed
A truck was traveling at 16.6 miles per second and accelerates at a rate of 2.0 meters per second squared then time is required for the truck to reach a speed of 25 miles per second is 6759 s.
Explanation:
Velocity is defined as the rate of change in displacement while acceleration is defined as the rate of change of velocity. Acceleration may be positive or negative. Acceleration is positive when the velocity of the object is increases and it is negative when velocity of the object is decreases. Negative acceleration is also called deceleration.
Mathematically
a = 
Where a is the acceleration of the object,
is the final velocity of the object and
is the initial velocity of the object. t is equal to time taken.
Given data:
= 25 miles/s
= 16.6 miles/s
a = 2.0 m/s²
t = ?
As velocities and acceleration given in different units, So we need to convert to obtain same units. Here we convert unit of acceleration from m/s² to miles/s².
1 m/s² = 0.000621371192 miles/s²
2 m/s² = 0.00124274238 miles/s²
So,
a = 0.00124274238 miles/s²
Apply formula
a =
t = 
t = 
t = 6759 s
Learn more about velocity and acceleration from
brainly.com/question/1192983
#learnwithBrainly
Answer:
option (A) - false
option (B) - true
option (C) - true
option (D) - true
option (E) - true
option (F) - true
Explanation:
The sound waves are mechanical waves that means they need a medium to travel.
The light waves are non mechanical waves it means they do not need a medium to travel.
Sound cannot travel trough vacuum.
Sound can travel through air and water.
Light can travel trough vacuum and in air and in water.
Answer:
Incomplete questions
Let assume we are asked to find
Calculate the induced emf in the coil at any time, let say t=2
And induced current
Explanation:
Flux is given as
Φ=NAB
Where
N is number of turn, N=1
A=area=πr²
Since r=2cm=0.02
A=π(0.02)²=0.001257m²
B=magnetic field
B(t)=Bo•e−t/τ,
Where Bo=3T
τ=0.5s
B(t)=3e(−t/0.5)
B(t)=3exp(-2t)
Therefore
Φ=NAB
Φ=0.001257×3•exp(-2t)
Φ=0.00377exp(-2t)
Now,
Induce emf is given as
E= - dΦ/dt
E= - 0.00377×-2 exp(-2t)
E=0.00754exp(-2t)
At t=2
E=0.00754exp(-4)
E=0.000138V
E=0.138mV
b. Induce current
From ohms laws
V=iR
Given that R=0.6Ω
i=V/R
i=0.000138/0.6
i=0.00023A
i=0.23mA
Answer:
563712.04903 Pa
Explanation:
m = Mass of material = 3.3 kg
r = Radius of sphere = 1.25 m
v = Volume of balloon = 
M = Molar mass of helium = 
= Density of surrounding air = 
R = Gas constant = 8.314 J/mol K
T = Temperature = 345 K
Weight of balloon + Weight of helium = Weight of air displaced

Mass of helium is 6.4356 kg
Moles of helium

Ideal gas law

The absolute pressure of the Helium gas is 563712.04903 Pa