<span>The correct answer is: (D) Generator
Explanation:
In wind-powered systems, the wind energy turns the blades around the rotor of a wind turbine. That rotor is connected to a generator that generates electricity. In other words, the kinectic energy of the wind is converted into electrical energy by using the generator in the wind-powered systems.</span>
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Strong Nuclear force: it is the short range force and strongest fundamental force in all type of forces.
Electromagnetism: this is the force due to magnetic and electric behavior of the particles. It is moderate type of force and its range is more than Nuclear force.
Weak Nuclear Force: This force is also short range force which act between the nucleoside. But this force is also moderate type of force
Gravitational force: this force is between two point masses and least order of force. also the range of this force is upto infinite.
so the correct order of this fundamental force is
<em>strong nuclear, electromagnetism, weak nuclear, gravitational</em>
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.