1). c ... 2). d ... 3). a ... 4). d ... 5). c ... 6). a
7). b-mass ... c-m/s ... d-Newton's 1st ... e-Newton's 2nd
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
For a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s is mathematically given as
F= 618.9 N
<h3>What is the centripetal
force?</h3>
Generally, the equation for the angular speed is mathematically given as
w = v/R
Therefore
w= 4.7/1.8
w= 2.611 rad/s
Where total momentum
Tm= 642.96 + 272.32
Tm= 915.28
and total inertia
Ti= 184 + 246.24
Ti= 430.24
In conclusion, centripetal force
F= mrw^2
F = m*R*w2^2
F = 76*1.8*2.127^2
F= 618.9 N
Read more about mass
brainly.com/question/15959704
CQ
Flag
a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s in the counter clockwise direction when viewed from above a person with mass m=76 kg and velocity v=4.7 m/s runs on a path tangent to the merry go round once at the merry go round the person jumps on and holds on to the rim of the merry go round angular speed of the merry go round after the person jumps on 2.127 rad/s Once the merry go round travels at this new angular speed with what force does the person need to hold on?
In a reaction with a directing vendor of the sum forces towards some object or nothing