•3.9g of ammonia
•molar mass of ammonia = 17.03g/mol
1st you have to covert grams to moles by dividing the mass of ammonia with the molar mass:
(3.9 g)/ (17.03g/mol) = 0.22900763mols
Then convert the moles to molecules by multiplying it with Avogadro’s number:
Avogadro’s number: 6.022 x 10^23
0.22900763mols x (6.022 x 10^23 molecs/mol)
= 1.38 x 10^23 molecules
Answer:
Explanation:
The Ce metal has electronic configuration as follows
[Xe] 4f¹5d¹6s²
After losing 4 electrons , it gains noble gas configuration ,. So Ce ⁺⁴ is stable.
Eu has electronic configuration as follows
[ Xe ] 4 f ⁷6s²
[ Xe ] 4 f ⁷
Its outermost orbit contains 2 electrons so Eu²⁺ is stable. Its +3 oxidation state is also stable.
Ce⁺²
Since it was specifically stated that heat is released, therefore
heat is located on the right side of the reaction equation. Also stating the
states of each compound, the complete balanced reaction would be:
C2H5OH (l) + 3 02 (g) -----> 2 CO2 (g) + 3 H2O (g) + 1235
kJ
At room temperature, water is liquid in form. For helium, it is gas because it is the second lightest element in nature. So, you would expect the density of Helium to be much less than 1 g/cm³. Because gas is very light and occupies a lot of space, the density would result to a very small number.