Valency- it means the combing capacity if an element.
<span> radical- it is an atom, molecule, or ion that has unpaired valence electrons or an open electron shell.
</span>
The ion N³⁻ is called the azide ion. In its neutral state, it occurs as the element Nitrogen. The atomic number of Nitrogen is 7. When it turns into an anion (negatively charged ion), it gains 3 more electrons. That's why its net charge becomes -3. It means that the protons is still 7, but the electrons are now 10.
Overall charge = +7 + -10 = -3
Answer:
All of the physical and biological factors in it's environment, I think this is the answer, but I might be wrong.
Explanation:
I learned it in my school's Science class
<span>A scientific question is like a hypothesis. It's the question that you're trying to answer throughout the experiment. So, a scientific question in this case could be: If the car has bigger wheels, will it travel faster? This is something you can test in the experiment, by having different cars with different sized wheels. In this way, you can track how fast each car goes, and determine whether or not the wheel size increases speed, decreases speed, or has no effect on speed.</span>
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K