Answer: 1.80g
Explanation:
Molar Mass of AlCl3 = 27 + (3x35.5)
= 27 + 106.5 = 133.5g/mol
Number of mole of AlCl3 = 0.0135mol
Mass = 0.0135 x 133.5= 1.80g
<span>Prefixes are used in the metric system to indicate smaller or larger measurements</span>
Answer:
The empirical formula is =
Explanation:
Given that:- Mass of nickel = 2.241 g
Mass of the oxide formed = 2.852 g
Mass of the oxygen reacted = Mass of the oxide formed - Mass of nickel = 2.852 g - 2.241 g = 0.611 g
Molar mass of nickel = 58.6934 g/mol
Moles of nickel =
= 0.03818 mol
Molar mass of oxygen = 15.999 g/mol
Moles of nickel =
= 0.03818 mol
Taking the simplest ratio for Ni and O as:
0.03818 : 0.03818 = 1 : 1
<u>The empirical formula is =
</u>
Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic