Answer:
0!
Explanation:
- You need to search your pKa values for Asn (2.14, 8.75), Gly (2.35, 9.78) and Leu(2.33, 9.74), the first value corresponding to -COOH, the second to -NH3 (a third value would correspond to an R group, but in this case that does not apply), and we'll build a table to find the charges for your possible dissociated groups at indicated pH (7), we need to remember that having a pKa lower than the pH will give us a negative charge, having a pKa bigger than pH will give us a positive charge:
-COOH -NH3
pH 7------------------------------------------------------
Asn - +
Gly - +
Leu - +
- Now that we have our table we'll sketch our peptide's structure:
<em>HN-Asn-Gly-Leu-COOH</em>
This will allow us to see what groups will be free to react to the pH's value, and which groups are not reacting to pH because are forming the bond between amino acids. In this particular example only -NH group in Ans and -COOH in Leu are exposed to pH, we'll look for these charges in the table and add them to find the net charge:
+1 (HN-Asn)
-1 (Leu-COOH)
=0
The net charge is 0!
I hope you find this information useful and interesting! Good luck!
Answer:
0.007 M
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
The expression of the pH of the calculation of weak acid is:-
Where, C is the concentration = ?
Given, pH = 3.45
So, for
,

C = 0.007 M
Answer:
2. Na2O
Reasoning:
Na (soduim) is the only metal out of all the elements in the answer choices, and is bonded with oxygen, a nonmetal, therefore creating an ionic bond.
The three traditional states of matter are solid, liquid, and gas.
A state of matter would be considered a physical property as it does not change the chemical composition of the substance and is reversible.
Ex) Freezing water will turn it to ice. The ice is still water and therefore, has not changed chemically. If we warm the ice, it turns to water. That reaction is then considered reversible.
Hope this helped :)