<h2>Hey there! :) </h2>
<h3>The treatment and disposal of Mercury:</h3>
- Heating and incineration can release the mercury vapor into atmosphere causing atmospheric pollution. The process of solidification and disposal into secured landfill, gas phase recovery of mercury, and thermal treatment is gaining interest in mercury treatment and recovery field by various researchers and industries.
<h2>HOPE IT HELP YOU </h2>
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions. ( K, Cl)...
Answer:
Explanation:
To calculate their average atomic masses which is otherwise known as the relative atomic mass, we simply multiply the given abundances of the atoms and the given atomic masses.
The abundace is the proportion or percentage or fraction by which each of the isotopes of an element occurs in nature.
This can be expressed below:
RAM = Σmₙαₙ
where mₙ is the mass of isotope n
αₙ is the abundance of isotope n
for this problem:
RAM of Li = m₆α₆ + m₇α₇
m₆ is mass of isotope Li-6
α₆ is the abundance of isotope Li-6
m₇ is mass of isotope Li-7
α₇ is the abundance of isotope Li-7
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.
Answer:
Radiation is energy. It can come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. There are different forms of radiation and they have different properties and effects.
Explanation: