Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N. Details about number of atoms can be found below.
How to calculate number of atoms?
The number of atoms of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
However, the number of moles of oxygen in glycine can be calculated using the following expression:
Molar mass of C₂H5O2N = 75.07g/mol
Mass of oxygen in glycine = 32g/mol
Hence; 32/75.07 × 7.51 = 3.2grams of oxygen in glycine
Moles of oxygen = 3.2g ÷ 16g/mol = 0.2moles
Number of atoms of oxygen = 0.2 × 6.02 × 10²³ = 1.205 × 10²³ atoms
Therefore, 1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Answer:
I would say for #1 Fiona and for #2 sexual
Explanation:
Please give brailiest
Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
B. Biomass
(I guess so cause other ones are already being used)