You might need to take more pictures so we can see all the equations clearly
Answer:
First structure is sophorose, second structure is turanose, third structure is trehalose, fourth structure is none of the above.
Answer:
When copper(II) chloride and sodium carbonate solutions are combined, solid copper(II) carbonate precipitates, leaving a solution of sodium chloride. Write the conventional equation, total ionic equation, and net ionic equation for this reaction.
Explanation:
The word equation for the reaction is:
Copper (II) chloride(aq) + sodium carbonate (aq) ->sodium chloride (aq) + copper carbonate(s)
The balanced chemical equation of the reaction is:

The complete ionic equation is:

The net ionic equation is obtained from the complete ionic equation after removing the spectator ions:

The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
<h2><u>
Answer:</u></h2>
n = 0.0989 moles
<h2><u>
Explanation:</u></h2>
n = PV / RT
P = 2.09atm
V = 1.13L
R = 0.08206
T = 291K
Plug the numbers in the equation.
n = (2.09atm)(1.13L) / (0.08206)(291K)
n = 0.0989 moles