Answer:
d) The limit does not exist
General Formulas and Concepts:
<u>Calculus</u>
Limits
- Right-Side Limit:

- Left-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Limit Property [Addition/Subtraction]: ![\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%20%3D%20%20%5Clim_%7Bx%20%5Cto%20c%7D%20f%28x%29%20%5Cpm%20%5Clim_%7Bx%20%5Cto%20c%7D%20g%28x%29)
Step-by-step explanation:
*Note:
In order for a limit to exist, the right-side and left-side limits must equal each other.
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Find Right-Side Limit</u>
- Substitute in function [Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

<u>Step 3: Find Left-Side Limit</u>
- Substitute in function [Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴ Since
, then 
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
4 units
Step-by-step explanation:
just took a quiz and got it right
Answer:
5000 students appeared in the examination.
Step-by-step explanation:
We solve this question using Venn probabilities.
I am going to say that:
Event A: Passed in Mathematics
Event B: Passed in English.
5% failed in both subjects
This means that 100 - 5 = 95% pass in at least one, which means that 
80% passed in mathematics 75% passed in english
This means that 
Proportion who passed in both:

Considering the values we have for this problem

3000 of them were passed both subjects how many students appeared in the examination?
3000 is 60% of the total t. So



5000 students appeared in the examination.
The first point could be (5, 40)
The second could be (25, 20)
That's just assuming the number of minutes are the x-coordinates...
Hope this helps!
X^2+y^2=R^2
64+36=R^2
R=10
x^2+y^2=100