Answer:
290.82g
Explanation:
The equation for the reaction is given below:
2Al + 3H2SO4 -> Al2(SO4)3 + 3H2 now, let us obtain the masses of H2SO4 and Al2(SO4)3 from the balanced equation. This is illustrated below:
Molar Mass of H2SO4 = (2x1) + 32 + (16x4) = 2 + 32 +64 = 98g/mol
Mass of H2SO4 from the balanced equation = 3 x 98 = 294g
Molar Mass of Al2(SO4)3 = (2x27) + 3[32 + (16x4)]
= 54 + 3[32 + 64]
= 54 + 3[96] = 54 + 288 = 342g
Now, we can obtain the mass of aluminium sulphate formed by doing the following:
From the equation above:
294g of H2SO4 produced 342g of Al2(SO4)3.
Therefore, 250g of H2SO4 will produce = (250 x 342)/294 = 290.82g of Al(SO4)3
Therefore, 290.82g of aluminium sulphate (Al(SO4)3) is formed.
Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
1.D 2.A that is pretty hard
Change the places of 'acts against the motion of an object' and 'causes an object to change speed or direction'